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Abstract

Wavelet packets provide a library of orthonormal bases and can therefore represent a signal in many
different ways. This paper presents a method to select the orthonormal basis to represent vibration signals
for rotating machinery fault diagnosis. The selected basis is formed by two sets of basis functions for
representation of the transients excited by localized faults and other signal components of interest,
respectively. This method overcomes the limitation of the widely used Coifman and Wickerhauser’s best
basis algorithm in detection of transients hidden in large background vibration and is more effective in
rotating machinery fault diagnosis especially in the early stage of fault development. In addition, differing
from some existing studies, this method does not need training samples and is relatively easy to implement
in practice. Applications in the analysis of gearbox and bearing vibration signals show that the proposed
method performs better than the best basis algorithm.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating machinery covers a broad range of critical facilities. Fault diagnosis of such
equipment is of particular importance in industries. Vibration analysis has been the major
approach for this task. Its success depends largely on the techniques used in processing the
vibration signals.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Owing to its advantage of direct association with the rotating characteristics, spectral analysis
has been the most used signal processing tool in the vibration analysis of rotating machinery.
However, despite the success in many situations, robust early detection of localized defects such as
cracking teeth in gearboxes and surface spalling of rolling element bearings still remains a difficult
problem. Localized defects often excite additional localized components into the background
vibration. As a result, the picked-up signals may consist of not only harmonics which are mainly
related to rotating activities but also transients generated due to the presence of the defects.
Spectral analysis is excellent in analyzing harmonics but ineffective for handling transients
because it represents a signal with complex exponentials that are not localized in time.
To better deal with the problem, some other techniques have been developed such as kurtosis
analysis [1], resonance demodulation [2,3], time domain averaging [1], etc. These techniques have
improved the detection considerably but still have certain limitations. For example, some of them
may require to bandpass-filter the signal for enhancement of the transients. This is unfortunately
sometimes difficult since there may not exist a reliable way to know the frequency range of the
transients.
In the last decade, time–frequency analysis has received great attention in the area of machinery

fault diagnosis. Particularly, the recent advances of wavelet analysis offer a new set of techniques
of time–frequency analysis that have been shown to be powerful in transient detection. They thus
provide highly promising tools for dealing with localized defects of rotating machinery. Owing to
its advantage of being adaptive and computationally efficient, wavelet packet transform (WPT)
[4,5] has been one of the several most studied wavelet techniques in machinery diagnosis. Its
effectiveness has been investigated by a number of researchers. To name a few, in Ref. [6], Geng
and Qu showed the advantages of WPT over spectrum analysis and Wigner–Ville distribution in
handling the vibration transients generated in rotating machine elements. Liu et al. [7] represented
vibration signals of different conditions with different sets of wavelet packet vectors and obtained
good results in bearing failure detection. Yen and Lin [8] employed statistical criteria to select the
features represented with wavelet packets, which was found to be able to improve the
performance of the associated neural network classifier significantly in bearing fault diagnosis.
More recently, Altmann and Mathew [9] proposed a method for detection and diagnosis of low-
speed rolling-element bearing faults. They used an adaptive network-based fuzzy inference system
to extract the featured wavelet packets which cover multiple frequency bands and yield a much
higher signal-to-noise ratio than the conventional bandpass or highpass filtering approaches. In
another latest study [10], Nikolaou and Antoniadis suggested to take advantage of the modulation
property of bearing vibration in applying WPT to detect localized defects. Their method needs
little interventions of the user.
Wavelet packets can form a great number of orthonormal bases. Each of them is capable of

representing a signal completely. This means that by using wavelet packets one can represent a
signal in many different ways. So far, most of the existing studies use the well-known ‘‘best basis’’
algorithm developed by Coifman and Wickerhauser [4,5] to select the basis. Such a basis can well
characterize the time–frequency composition of a signal but is not necessarily best suitable for
feature detection in machinery diagnosis. This is because the selection process of the best basis is
dominated by the signal components that are relatively large in a frequency band. In fault
diagnosis, especially in the early stage of fault development, the featured components such as the
transients produced by localized defects however are usually much smaller than the background
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components. If these two types of components overlap in frequency, the best basis algorithm may
not be able to detect the transients.
In this paper, we propose a basis selection method to deal with the above problem. This method

first selects the wavelet packet basis functions for the subspace that contains the transients excited
possibly by localized defects. These basis functions are capable of representing the transients
relatively clearly and make the detection of localized defects relatively easy. The method then
selects the wavelet packet basis functions for the complementary subspace so that other signal
components, such as harmonics, can be represented efficiently. This method improves the results
of transient detection using Coifman and Wickerhauser’s best basis algorithm while retaining its
advantage in representing other types of signal components. In addition, the proposed method
does not need training samples and is thus convenient for practical use. The effectiveness of this
method is tested with applications to the detection of gear tooth crack and bearing surface
spalling.
The paper is organized as follows: In the next section, the principle of wavelet packets and the

best basis algorithm is reviewed briefly. Then, the algorithms of the proposed method are
presented in Section 3. In Section 4, this method is applied to the detection of localized gear and
ball bearing defects. Comparisons with the best basis wavelet packet transform are also presented.
Concluding remarks are finally given in Section 5.
2. Wavelet packets and best basis algorithm

Wavelet packets are a collection of functions f2�j=2W nð2
�jt � kÞ; n 2 N; j; k 2 Zg generated

from the following sequence of functions [4,5]:

W 2nðtÞ ¼
ffiffiffi
2

p X
l

hlW nð2t � lÞ;

W 2nþ1ðtÞ ¼
ffiffiffi
2

p X
l

glW nð2t � lÞ; (1)

where h and g are the quadrature mirror filters, W 0ðtÞ and W 1ðtÞ are the scaling function and basic
wavelet, respectively. The wavelet packet 2�j=2W nð2

�jt � kÞ is a localized function of unit energy
with scale 2j; translation 2jk; and an oscillation parameter of n:
For a discrete signal, the decomposition coefficients of wavelet packets can be computed

iteratively by

xk
2n;jþ1 ¼

X
l

hl�2kxl
n;j;

xk
2nþ1;jþ1 ¼

X
l

gl�2kxl
n;j: (2)

The original signal can be reconstructed iteratively by

xl
n;j ¼

X
k

hl�2kxk
2n;jþ1 þ

X
k

gl�2kxk
2nþ1;jþ1: (3)
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The wavelet packet functions as well as the corresponding decomposition coefficients can be
organized as a binary tree as shown in Fig. 1. Each node corresponds to a frequency band. The
leaf nodes of any connected subtree that has the same root node as the full tree form an
orthonormal basis and can represent a signal of finite energy completely. The best basis algorithm
developed by Coifman and Wickerhauser [4,5] provides an approach to choose the so-called ‘‘best
basis’’ to represent a given signal adaptively.
In order to select the best basis, Coifman and Wickerhauser introduced the concept of

information cost function that is used as a measure to search for its minimum over all the wavelet
packet bases. The most used information cost function is Shannon entropy. For a discrete signal
X of unit energy, the Shannon entropy of the decomposition coefficient sequence X n;j ¼ fxk

n;jg of
the nth node at level j of the wavelet packet tree is computed by [4,5]

MðX n;jÞ ¼ �
X

k

ðxk
n;jÞ

2 logðxk
n;jÞ

2; (4)

where ðxk
n;jÞ

2 logðxk
n;jÞ

2 is taken as 0 if xk
n;j ¼ 0: MðX n;jÞ reflects the degree of energy concentration

of the coefficient sequence. It is large if the elements of the sequence are roughly the same and
small if all but a few elements are negligible.
Let Bn;j be the basis of vectors of the nth node at the jth level of the wavelet packet tree, and

An;j; the best basis for the signal restricted to the span of Bn;j: The best basis algorithm starts by
setting An;J ¼ Bn;J at the bottom level of the tree, and continues upwards from j ¼ J � 1 to 0 by
setting recursively

An;j ¼
Bn;j if MðBn;jX ÞpMðA2n;jþ1X [ A2nþ1;jþ1X Þ;

A2n;jþ1 � A2nþ1;jþ1 otherwise:

(
(5)

The basis A0;0 thus selected minimizes the information cost function and is referred to as the best
basis of the signal.
The best basis can well characterize the time–frequency composition of a nonstationary

signal. It however may not be the best for other tasks. The method given in the
Fig. 1. Wavelet packet tree. The nth node at level j includes the wavelet packet functions f2�j=2W nð2
�j t � kÞ;

0pko2�jNg: As an example, the wavelet packet functions of the filled nodes form an orthonormal basis. The

decomposition coefficients are organized as the same tree, in which the nth node at level j includes the decomposition

coefficients with respect to f2�j=2W nð2
�j t � kÞ; 0pko2�jNg:
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next section provides a way to select a basis that is more suitable for rotating machinery fault
diagnosis.
3. Basis selection for fault diagnosis

3.1. Basis selection for the subspace containing fault excited transients

For convenience of description, we denote the subspace that contains transients excited possibly
by localized faults by U and the complementary subspace by V with U � V ¼ RN ; where N is the
length of the signal. This subsection addresses how to select the basis for U : Our basic approach is
first to select a basis for the space RN with the aim of enhancing the transient components of the
analyzed signal. Then we identify from this basis the nodes for which the impulses in the
corresponding decomposition coefficient sequences are possibly produced by localized faults. The
subspace spanned by the wavelet packets of these nodes is specified as the subspace U and these
wavelet packets form the desired orthogonal basis for U :
To select the transient enhancement basis for RN ; it is needed to design an information

cost function that should be capable of reflecting the impulse intensity of a sequence. Note
that increase of the magnitude of the impulse components in a sequence means increase
of the energy concentration of the sequence. Shannon entropy, as a measure of energy
concentration, thus can be used to design the cost function. In more detail, for the decomposition
coefficient sequence X n;j ¼ fxk

n;jg of the nth node at level j; we define the information cost
function as

TðX n;jÞ ¼ �2j
X

k

ðxk
n;jÞ

2

2jkX n;jk
2
log

ðxk
n;jÞ

2

2jkX n;jk
2
: (6)

It is essentially the Shannon entropy of a new sequence generated from X n;j by appending to each
coefficient xk

n;j itself 2j � 1 times. The denominator 2jkX n;jk
2 is introduced to normalize the

sequence. From Eq. (4), it can be easily shown that

TðX n;jÞ ¼ �
1

kX n;jk
2

MðX n;jÞ þ j þ log kX n;jk
2: (7)

Evidently, the computation cost of TðX n;jÞ is only slightly more than that of MðX n;jÞ in Eq. (4).
There exists the situation where the coefficient sequence of a node contains impulses and

the information cost T is low but the average energy of the sequence, i.e., the energy of the
sequence divided by its corresponding frequency bandwidth or equivalently by the sequence
length, is extremely small. Detection of such impulses is of no practical value since they may not
be produced by localized defects. To avoid the influence of such nodes, a simple way is to assign
them a very large information cost value, e.g., T inf ¼ e1000: In the present study, a node is
processed this way if the ratio Z ¼ Ea

node=Ea
sig; where Ea

node denotes the average energy of the
coefficient sequence of the node, and Ea

sig; the signal energy divided by the signal length, is less
than Zmin ¼ 0:05:
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Boundary effect is another issue that needs to be considered since it results in impulses at the
ends of the coefficient sequence of a node at a small scale and consequently a low information
cost. In the present research, we overcome this problem by windowing the original signal in the
preprocessing stage with a Tukey window defined as [11]

w½k� ¼

0:5 1þ cos
2pðk � 1Þ

rðN � 1Þ
� p

� �� �
; ko

r

2
ðN � 1Þ þ 1;

1;
r

2
ðN � 1Þ þ 1pkpN �

r

2
ðN � 1Þ;

0:5 1þ cos
2p
r
�
2pðk � 1Þ

rðN � 1Þ
� p

� �� �
; N �

r

2
ðN � 1Þok;

8>>>>>>><
>>>>>>>:

(8)

where N is equal to the length of the signal and the parameter r ð0oro1Þ is the ratio of the taper
to the constant section. The taper section reduces the boundary effect but causes only a little
change in the time–frequency composition of the signal if r is small ðr ¼ 0:1 for the application
examples in Section 4).
The selection of the transient enhancement basis for the space RN uses a recursive procedure

similar to Coifman and Wickerhauser’s best basis algorithm. However, besides using different
information cost functions, the comparison in the recursive procedure is also different. While the
best basis algorithm compares the information cost of a mother node with the sum of the
information costs of its children as shown in Eq. (5), the comparison here is performed between
the information cost of a mother node and the minimum information cost of its children. This is
because our purpose is to find the node which best enhances the transient components and the
remaining nodes in each comparison are of little importance. A more rigorous description of this
process will be given in Algorithm 1 at the end of this subsection.
The basis selected in the above way is suitable for transient enhancement but not necessarily as

good as the basis selected using Coifman and Wickerhauser’s algorithm for characterization of
some other types of signal components such as harmonics. It therefore appears better for rotating
machinery fault diagnosis if we could select a basis that combines the advantages of both the
methods, that is, to represent the transients with the basis functions selected using the method
described above while other components with the basis functions selected using Coifman and
Wickhauser’s algorithm. This is the reason that we divide the space RN into two subspaces and
represent them in different ways.
Now we address how to identify from the transient enhancement basis the nodes for which the

impulses in the corresponding decomposition coefficient sequences are produced possibly by
localized faults. As mentioned earlier, we specify the subspace spanned by the wavelet packets of
these nodes as U and these wavelet packets form the desired orthogonal basis for U : To do the
identification, it is needed to choose a measure and a threshold. Although the information cost
function defined in Eq. (6) could be a choice of the measure, determination of its threshold value is
however difficult. In the proposed method, kurtosis [1] is employed since it is well known in the
area of vibration monitoring and there are empirical quantitative criteria one can consult to
evaluate the condition of typical rotating machines. For example, in condition monitoring of
gears, if the kurtosis of raw vibration signals is considered, the threshold can be specified as
3.5–4.5. The kurtosis usually increases if the signals are properly filtered. For a sequence S ¼ fskg;
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the kurtosis is computed by

KðSÞ ¼
EfðS � mÞ4g

s4
; (9)

where m and s are the mean and standard deviation of S and Ef�g is the expectation.
In the process of the identification, we first reconstruct the signal restricted to the span of each

node in the selected transient enhancement basis and compute its kurtosis. Then the kurtosis is
compared with a threshold Kmin: A node is picked up if the kurtosis is larger than Kmin: There may
be more than one such nodes. The wavelet packets of all of them generate the subspace U and
form its desired basis. In the case where all the kurtosis values are less than Kmin; the subspace U

is empty.
It should be pointed out that the purpose of the above identification is only to determine which

basis selection method is used rather than decision making of fault diagnosis. The latter is carried
out based on the representation with the union of the bases for U and its complement V ; which
can provide much more detailed and reliable information for fault diagnosis. The value of the
threshold Kmin thus is not of decisive importance and can be determined easily. We should also
indicate that instead of Eq. (6), one may define the information cost function as a function of
kurtosis, e.g., TðX n;jÞ ¼ 1=KðX n;jÞ; to select the transient enhancement basis for the space RN

using the same algorithm. This however will increase the total computation load if compared with
the proposed method.
We now summarize the whole procedure described above as the following algorithm.
Algorithm 1. Suppose that we have a discrete signal of length N and have chosen the wavelet and
the maximum level J for wavelet packet decomposition. The basis for the subspace U that
possibly contains fault excited transients can be selected as follows:

Step 1: Windowing the signal with the Tukey window given in Eq. (8). Denote by X the
windowed signal.

Step 2: Decompose X into wavelet packets. Let Bn;j be the basis of vectors of the nth node at the
jth level, and An;j; the best transient enhancement basis for the signal restricted to the span of Bn;j:

Step 3: Compute the average energy of the coefficient sequence of each node Ea
node: Set the

information cost of a node as T inf if the ratio Z ¼ Ea
node=Ea

sig is smaller than Zmin: Compute the
information cost of the remaining nodes using Eq. (7). Denote by TB

n;j and TA
n;j the information

cost corresponding to Bn;j and An;j; respectively.
Step 4: Set An;J ¼ Bn;J and TA

n;J ¼ TB
n;J for n ¼ 0; 1; . . . ; 2J � 1:

Step 5: Determine An;j for j ¼ J � 1; J � 2; . . . ; 0; n ¼ 0; 1; . . . ; 2j � 1 as follows:

if TB
n;jpminfTA

2n;jþ1;T
A
2nþ1;jþ1g; then An;j ¼ Bn;j and set TA

n;j ¼ TB
n;j; else An;j ¼ A2n;jþ1 � A2nþ1;jþ1

and set TA
n;j ¼ minfTA

2n;jþ1;T
A
2nþ1;jþ1g: The finally obtained basis A0;0 is the desired transient

enhancement basis of the signal.
Step 6: Compute the kurtosis of the reconstructed signal restricted to each selected node with

Eq. (9) and compare it with the threshold Kmin: The wavelet packets of the nodes with a value
of kurtosis greater than Kmin then generate the subspace U and form the desired orthogonal basis
for U :
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3.2. Basis selection for the complementary subspace

Now we address the selection of the basis for representation of the complementary subspace V :
As an example, Fig. 2(a) shows a subtree obtained by pruning away the descendants of the nodes
that form the selected basis for U ; where these nodes are marked by ‘‘A’’. To select the basis for
V ; we first pick up along each branch the highest subtree disjoint with the nodes marked by ‘‘A’’.
In Fig. 2(a), the root nodes of such subtrees are marked by ‘‘Q’’. These nodes generate the
subspace V (but not necessarily form its best basis). The method for picking up such subtrees is
given later in Algorithm 2.
Fig. 2(b) gives the time–frequency phase plane of the subtree in Fig. 2(a), where the

correspondence between the marked nodes in the subtree and their frequency bands is displayed
schematically. Selection of the basis for V is equivalent to selection of a partition of the frequency
bands marked by ‘‘Q’’.
Once the above-mentioned subtrees whose root nodes generate the subspace V are picked up,

we apply Coifman and Wickerhauser’s algorithm to select the best basis for each of them. The
recursive process now is carried out up to the root node of a subtree, i.e., those marked by ‘‘Q’’ in
Fig. 2(a). The linear combination of the selected basis functions of all the subtrees then forms the
best basis for the complementary subspace V :
Fig. 2. (a) A subtree obtained by pruning away the descendants of the nodes (marked by ‘‘A’’) that form the basis for

U : The nodes marked by ‘‘Q’’ are the root nodes of the highest subtrees disjoint with the nodes marked by ‘‘A’’. (b) The

time–frequency phase plane corresponding to the nodes marked by ‘‘A’’ and ‘‘Q’’. (c) The subtree whose leaf nodes

form the selected basis for fault diagnosis. The nodes marked by ‘‘A’’ and ‘‘B’’ form the basis for U and V ; respectively.
(d) The time–frequency phase plane corresponding to the selected basis.
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The following algorithm describes the details for selection of the basis.

Algorithm 2. Suppose that we have selected the basis for U and obtained the subtree with the
descendants of the nodes that form this basis pruned away. The basis for the complementary
subspace V can be selected as follows:

Step 1: Let G be the index set of the nodes that form the selected basis for U : Assign each node
in the pruned tree an initial value:

P0
n;j ¼

1 if ðn; jÞ 2 G;

0 otherwise:

�
(10)

Step 2: Let L be the index set of the leaf nodes of the pruned tree. Start from the bottom of each
branch and reassign each node in the tree a value

P1
n;j ¼

P0
n;j if ðn; jÞ 2 L;

P0
2n;jþ1 [ P0

2nþ1;jþ1 otherwise:

8<
: (11)

Step 3: Start from the top of the pruned tree and search downwards. The first encountered node
along each branch with a reassigned value P1

n;j ¼ 0 is the root node of the highest subtree along its
branch included in the subspace V :

Step 4: For each of these subtrees, select the best basis using Coifman and Wickerhauser’s
algorithm. The union of all the selected bases then forms the best basis for V :

By combining the selected bases for the two subspaces U and V ; we finally obtain a basis for
adaptive representation of a signal. Corresponding to Fig. 2(a), Fig. 2(c) shows a subtree obtained
by further pruning away the descendants of the nodes that form the selected basis for V ; where
these nodes are marked by ‘‘B’’. All the leaf nodes in this subtree form the selected basis of the
signal. Fig. 2(d) shows the time–frequency phase plane corresponding to this subtree. The
frequency bands marked by ‘‘A’’ are assumed to be suitable for representation of transients. The
frequency bands formed by the nodes marked by ‘‘Q’’ in Fig. 2(a) are now partitioned by the
nodes marked by ‘‘B’’ corresponding to the best basis for V : Since the basis is signal dependent
and is selected with the aim of effective representation of both transients and other features such
as harmonics of a vibration signal, it is thus suitable for fault diagnosis of rotating machinery.
4. Applications

To demonstrate the performance of the proposed method, this section presents several
application examples for detection of localized gear and bearing failures using vibration signals.
In all the examples, Daubechies wavelet db10 is used.
The vibration signals analyzed in the first two examples were collected from a life testing

experiment of an automobile gearbox. The transmission train in the test was: Z28=Z48 !

Z20=Z44 ! Z30=Z36 ! Z15=Z42: The rotation speed of the input shaft was 1600 rpm. A load
of 880 kgm was applied to the output shaft. At the end of the test, one tooth of the driving gear
ðZ15Þ; which ran at 5.89Hz, in the last meshing pair was broken. The vibration signals were
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picked up at the bearing seat of the output shaft. They were lowpass-filtered at 1.8 kHz and
digitized at a sampling frequency of 4 kHz.
We first analyze a vibration signal picked up near the time when the tooth was broken.

Figs. 3(a) and (b) show its waveform and Fourier transform. Fig. 4 shows the time–frequency
phase plane of the signal obtained using the proposed method, where the threshold Kmin is set as 6
Fig. 3. (a) A vibration signal collected from the gearbox before the tooth breakage, and (b) its Fourier transform.

Fig. 4. Time–frequency plane of the signal in Fig. 3(a) obtained using the proposed method.
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for identification of the subspace U : One can see that in the frequency band below 250Hz, there
exist a sequence of regularly spaced dark patches. They have a short time duration but a relatively
large frequency band and thus represent impulsive components in the signal. The average time
spacing between the neighboring impulses is about 0.17 s, corresponding to 5.9Hz in frequency,
which is very close to the rotation frequency of the damaged gear mentioned above. These
features indicates clearly the existence of a tooth defect on this gear. Fig. 5 shows the
time–frequency plane obtained using Coifman and Wickerhauser’s best basis algorithm. It is the
same as Fig. 4 in the frequency band above 250Hz. In this band, most of the components have a
large time scale and narrow frequency band and represent harmonic components in the signal. In
the band below 250Hz, Fig. 5 shows the existence of a harmonic component at the frequency of
88Hz, which is close to 88.39Hz, the meshing frequency of the last gear pair in the transmission
path. There are several regularly spaced vertical patches below and above the frequency of 200Hz,
which indicates the existence of a localized defect. Compared with Fig. 4, this indication however
is much less clearer and is liable to be neglected.
In the second example, we analyze a signal collected earlier than the one in the first example.

The waveform and its Fourier transform are shown in Fig. 6. Fig. 7 shows the result obtained
using the proposed method with Kmin ¼ 5: It indicates that there exist impulsive components in
the frequency band below 250Hz. The time spacing between the neighboring impulsive
components is close to either the rotation period of the damaged gear or its multiple. Although
some of the impulses are not revealed, the obtained features are nevertheless sufficient for
detection of the defect. Fig. 8 shows the time–frequency plane obtained using Coifman and
Wickerhauser’s best basis algorithm. Again, both the methods can well characterize the harmonic
components above 250Hz. However, unlike the first example, the best basis algorithm here does
not show the existence of the impulsive components in the band below 250Hz. This is because the
Fig. 5. Time–frequency plane of the signal in Fig. 3(a) obtained using Coifman and Wickerhauser’s best basis

algorithm.
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Fig. 6. (a) A vibration signal collected earlier than the one depicted in Fig. 3(a) from the same gearbox, and (b) its

Fourier transform.

Fig. 7. Time–frequency plane of the signal in Fig. 6(a) obtained using the proposed method.

B. Liu / Journal of Sound and Vibration 284 (2005) 567–582578
impulsive components here are very weak and the representation of this band using the best basis
algorithm is dominated by the harmonic components.
The problem concerned in the next example is localized failure detection of a rolling element

bearing. The specifications of the tested bearing in the experiment were as follows: number of
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Fig. 8. Time–frequency plane of the signal in Fig. 6(a) obtained using Coifman and Wickerhauser’s best basis

algorithm.

Fig. 9. (a) A vibration signal collected from the bearing with a localized defect on one rolling element, and (b) its

Fourier transform.

B. Liu / Journal of Sound and Vibration 284 (2005) 567–582 579
rolling elements, 8; diameter of the rolling elements, 15mm; medium diameter, 65mm; and
contact angle, 01. The bearing carried a defect on one rolling element induced in the form of a
dimple measuring about 0.1mm in depth and 1mm in diameter. The vibration signals were picked
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Fig. 10. Time–frequency plane of the signal in Fig. 9(a) obtained using Coifman and Wickerhauser’s best basis

algorithm.

Fig. 11. Time–frequency plane of the signal in Fig. 9(a) obtained using the proposed method.

B. Liu / Journal of Sound and Vibration 284 (2005) 567–582580
up at a constant inner race rotation speed of 2000 rpm and with a load of 20 kg applied to the
outer race fixed on the test rig. The signals were lowpass-filtered at 9 kHz and digitized at a
sampling rate of 20 kHz. Under these test conditions, the passing period, i.e., the average time
spacing between the neighboring impact excitations generated by the defect [1], was 7.31ms.
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Fig. 9(a) shows a typical signal of the bearing. Its Fourier transform is given in Fig. 9(b). There
are several apparent transients in the range from 0.02 to 0.05 s. The analysis result of Coifman and
Wickhauser’s best basis algorithm is presented in Fig. 10. It gives no meaningful information for
detection of the failure. Fig. 11 shows the time–frequency plane obtained using the proposed
method with Kmin ¼ 4: Some transients that are not clear in Fig. 9(a) are enhanced here. The
average time spacing between most of the neighboring dominant vertical patches in the band from
5 to 7.5 kHz is about 7.1ms. Note that the passing period of the defect is 7.31ms. It is thus
determined that the bearing carried a localized rolling element defect. This example again shows
that the proposed method is more effective than Coifman and Wickhauser’s best basis algorithm
in detection of incipient localized failures.
5. Conclusion

In this paper, we have proposed a method to select the wavelet packet basis for fault diagnosis
of rotating machinery. This method divides the signal vector space into two subspaces and
represents them in different ways. One of the subspaces contains the transient components excited
possibly by localized defects and the other contains the remaining components. For the former
subspace, a basis selection algorithm has been developed with the aim of enhancing the detection
of localized defects while for the later, the well-known Coifman and Wickerhauser’s best basis
algorithm is employed to select the basis. The union of these two bases then gives the basis for
representation of the analyzed signal. This basis is adapted to the composition of a signal and can
well reveal the characteristics of the transients and other components such as harmonics. The
proposed method was tested in the fault diagnosis of a gearbox and a rolling element bearing. The
results showed that it can better detect incipient localized failures than Coifman and
Wickerhuser’s best basis wavelet packet transform that is one of the several wavelet methods
used most successfully in machinery diagnosis. In addition, the proposed method does not require
training samples and is thus relatively easy to implement in practice.
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